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Figure 1. A Hammett plot of relative &H values (eq 4) for the 1-unde-
cyl radical vs. a substituent constants. The numbers correspond to the 
entries in Table I. 

Table I. Values of ks/kci for Substituted Toluenes toward 
the 1-Undecyl Radical at 80° 

No. QH kslkc No. QH kslkc 

1 
2 
3 
4 
5 

p-Xylene 
Mesitylene 
m-Xylene 
Toluene 
p-Chlorotoluene 

0.023« 
0.039» 
0.021» 
0.011 
0.018 

6 
7 
8 
9 

10 

m-Fluorotoluene 
m-Chlorotoluene 
m-Bromotoluene 
m-Tolunitrile 
m-Nitrotoluene 

0.021 
0.023 
0.017 
0.019 
0.028 

" The values plotted in Figure 1 for the xylenes were statistically 
corrected by a factor of 2; the value for mesitylene was corrected 
by a factor of 3. 

system in detail to determine the importance of this chain. 
The trichloromethyl radicals react readily to produce chlo­
roform, but the chain is evidently broken in the second 
step.17 Even in the absence of this chain sequence, a number 
of species (chloroform, bibenzyl, docosane, etc.) are pro­
duced during reaction. Examination of the reactivity and 
concentration of each showed that only in the case of chlo­
roform was reactivity sufficiently high to overcome the very 
low concentrations of these products; none of the other 
products contributed more than a fraction of a per cent to 
RH or RCl. 

Although its reactivity toward chlorine abstraction by the 
1-undecyl radical is quite low, chloroform has a relative &H 
value of about 30 compared to toluene. The contribution of 
chloroform to RH production in the kinetic runs, although 
much higher than that of the other products, was no more 
than ~ 2 % for [LP] = 0.01 M, the concentration used in the 
runs from which relative k\\ values were obtained. 

Addition of alkyl radicals to aromatic rings occurs readi­
ly,18 and it might be suggested that undecane is produced 
via a sequence in which undecyl radicals abstract hydrogen 
from the resulting cyclohexadienyl radicals or from nonrad­
ical products derived from these radicals. Thermolysis of 
LP in benzene produces appreciable amounts of undecyl-
benzene; the corresponding decomposition in toluene pro­
duces bibenzyl as the major product along with a small 
amount of undecyltoluene. However, in carbon tetrachlo-
ride-QH solutions the yield of the addition products is less 
than 1% of the total of RH and RCl, even for [QH]/[CC14] 
ratios as high as 15.19 

A test for ring involvement in RH formation was made 
by determining kH/ka values for benzene and substituted 
benzenes. These compounds all had approximately the same 
reactivity, which amounted to no more than 1 or 2% of that 
for toluene. This result indicates that the ring contribution 
to the reactivity of the toluenes is negligible. 

Another potential interference is "back-biting" by the 1-
undecyl radical, followed by abstraction of H or Cl by the 
resulting secondary radical. These reactions can be ruled 
out since only terminally substituted chloroundecane was 
found. Another source of RH might be reaction of R- with 
peroxide. However, this process can be neglected for [LP] 
= 0.01 M. 12d'e 
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Polar Effects in Radical Reactions. III. A Positive p for 
the Reaction of Undecyl Radicals with Substituted 
Toluenes1 

Sir: 

Hydrogen abstraction, the ubiquitous process all radicals 
undergo, is the most useful model for studying factors 
which affect the reactivity of radicals.2"4 Although the 
bond dissociation energies (BDE) of the bonds broken and 
formed in the reaction are the most important factors con-
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trolling hydrogen transfer rates, other influences such as 
polar effects on transition states (PETS) frequently cause 
important perturbations.5"7 Hammett-type correlations of 
the rate constants for radical reactions, which often have 
been accepted as prima facie evidence for predominant im­
portance of PETS, have been observed in atom trans­
fers,5"11 additions,8'9'12 copolymerizations,7b disproportion-
ations,13 and /3-scissions.14 

We believe that the p value in Hammett correlations of 
radical reactions is determined both by PETS and by sub-
stituent effects on the ground states of molecules through 
their influence on BDE.5-15 The effects of ring substituents 
on the BDE of benzyl hydrogens can only produce negative 
p values,163 whereas PETS can make either a positive or a 
negative contribution to p.1'15 Although most of the p values 
which have been reported are negative,8,9 we recently re­
ported p = +0.99 for the reaction of tert- butyl radicals 
with toluenes.1 Clearly, it is desirable to show that this posi­
tive p is not unique. The p values for the reaction of other 
alkyl radicals with toluenes can serve this purpose. Zavitsas, 
disregarding PETS, has predicted that alkyl radicals react 
with toluenes with p values ranging from —0.6 for methyl to 
-1.6 for tert- butyl;16b if the perturbations due to PETS are 
considered, p values for alkyl radical reactions should lie be­
tween the p observed for tert- butyl radicals, +0.99, and 
that for methyl radicals,17 about 0. In this paper we report 
on a study of the reaction of undecyl radicals with toluenes 
which gives a p of +0.5, consistent with the PETS argu­
ments. 

Our kinetic system involves heating lauroyl peroxide, 
LPO (0.6 M), at 81° for 10 hr in tert- butylbenzene solvent 
containing two substituted toluenes (0.4 M each) in an nmr 
tube. The relative rates of hydrogen abstraction from the 
toluenes by the undecyl radicals, U- ,areequal to the ratio 
of logarithms of the fractional amounts of the two toluenes 
remaining, as measured by nmr.18'19 

There are two types of reactions which could invalidate 
our kinetic analysis. (1) The first is benzylic hydrogen ab­
straction by radicals other than U-; other radicals which 
might abstract benzylic hydrogens are benzyl radicals and 
undecylcarboxy (UCO2O radicals. In similar systems, ab­
straction of hydrogen by a benzyl radical has been shown 
not to be important.20 Abstraction by UC02- is not signifi­
cant since the amount of undecanoic acid formed in the 
reaction mixture is only a tenth of the toluenes consumed 
and the undecane produced. 

(2) The second reaction which might interfere is addition 
of U- to the aromatic ring of substrates to produce a cyclo-
hexadienyl radical which can (a) form a substituted un-
decyltoluene by loss of a hydrogen atom or (b) dimerize to 
produce a cyclohexadienyl dimer, which can be further oxi­
dized to form biphenyls. 

(2a) Undecyltoluene is not a significant product; glpc 
analysis showed that thermolysis of 0.6 M LPO and 0.8 M 
toluene in benzene solvent (7.8 M) produced 0.18 M unde­
cane and only 0.024 M undecylbenzene.21 Since the rate 
constants for U- addition to benzene and toluene are ap­
proximately equal,23-243 even less undecyltoluene must be 
produced in this control experiment than undecylbenzene. 
(2b) Formation of biphenyls does not interfere with our ki­
netics method since the chemical shift of their benzylic pro­
tons is virtually identical with that in their substituted tolu­
ene precursors, and they would be counted as unreacted to­
luenes in our analysis. Cyclohexadienyl dimers might well 
interfere, both because their CH3 groups are shifted relative 
to the toluenes', and because they could be important hy­
drogen donors; however, they are not important products 
since we found no proton signals at 5-6 ppm where cyclo-

0.3 

0.2 

0.1 

> 

T, 0 

O 

•0.2 

-1 1 1 r 

m-CN 

m-MeO 

P-F 
IP-CI 

p-t Bu 

'p-Me 

p- MeO 

-0.2 0.2 0.4 0.6 

Figure 1. A Hammett equation plot of log (relative rate constants) vs. 
a for hydrogen abstraction from substituted toluenes by the undecyl 
radical at 81°. The least-squares treatment gives p = 0.50 ± 0.02 (r = 
0.97). 
hexadienyl vinylic hydrogens absorb. Thus, although some 
addition must occur, our nmr method is insensitive to this 
process.25 

A Hammett op correlation of our data at 81° (Figure 1) 
gives p = 0.50 ± 0.02 (12 points, r = 0.97). Henderson and 
Ward, studying this reaction by a completely independent 
method, report p = 0.47 ± 0.07 (r = 0.91).26 The fact that 
these two methods, with very different experimental dif­
ficulties and possible interfering reactions, give the same p 
value is strong evidence for the accuracy of this value.27 
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Photochemistry of Alkenes. III. Formation of Carbene 
Intermediates1 

Sir: 

Recent reports from these laboratories have shown that 
tri- and, especially, tetrasubstituted alkenes display a novel 
behavior on direct irradiation in hydroxylic media which 
leads principally to the formation of a mixture of saturated 
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and unsaturated ethers, as depicted in Scheme I for the con­
version of 2,3-dimethyl-2-butene (1) to the mixture of 
ethers 5.1 By contrast, in nonhydroxylic media, such as 
ether or octane, rearrangement to a 1.03:1 mixture of the 
1-butene 6 and the cyclopropane 7 occurs.2 Moreover, in al­
coholic solvents of low nucleophilicity substantial amounts 
of 6 and 7 are formed in competition with the ethers 5; thus 
the ratio 5:(6 +7) decreases in the order methanol > etha-
nol > 1-propanol > 1-butanol. 

The formation of ether products 5 has been interpreted in 
terms of nucleophilic trapping of the x,R(3s) Rydberg ex­
cited state (2).1 It is attractive to interpret the formation of 
6 and 7 in terms of competing rearrangement of the excited 
state 2 to the carbene intermediate 3, especially since 3 is 
known to undergo rearrangement to afford 6 and 7 in the 
same ratio when generated by other means.3 We wish now 
to report additional evidence which strongly supports the 
generation of carbene intermediates and indicates that the 
process is general for most tetrasubstituted alkenes on di­
rect irradiation in nonnucleophilic media. 

Thus, as shown in Table I, 3,4-dimethyl-3-hexene (8) is 
converted on irradiation in pentane solution to a mixture of 
the cyclopropyl and olefinic products 12-17,4 as would be 
expected from initial photorearrangement to the two possi­
ble carbene intermediates 10 and 11 (Scheme II). More­
over, the isomeric olefin 9, which should undergo rearrange­
ment to the same two carbene intermediates, affords a mix­
ture of the same products 12-17. Furthermore, although 
the carbene intermediates 10 and 11 are apparently formed 
in different relative amounts from olefins 8 and 9, the three 
products 12-14 are formed in similar ratios from each ole­
fin and by independent generation of carbene 10 from the 
corresponding tosylhydrazone. Likewise the products 15-17 
are formed in similar ratios on irradiation of either olefin or 
on independent generation of carbene l l . 5 

We have observed photoarrangement of a number of 
other tetrasubstituted alkenes to carbene-derived products, 
as exemplified in Scheme III for 1,2-dimethylcyclohexene.6 

Although the proposal that the carbene intermediates arise 
via rearrangement of the ir,R(3s) excited state requires fur-

Scheme III 
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